

Asian citrus psyllid and Huanglongbing in California, USA

II SIMPÓSIO INTERNACIONAL DE GREENING Araraquara – SP 22 e 23 de maio de 2018

Lucita Kumagai, CDFA Victoria Hornbaker, CDFA Nick Condos, CDFA Melinda Klein, CRB Gary Schultz, CRB Bruce Babcock, UC Riverside Georgios Vidalakis, UC Riverside

University of California

Agriculture and Natural Resources

05/22/2018

Vidalakis Lab

Greg Greer **Rock Christiano** Deborah Pagliaccia Sohrab Bodaghi Irene Lavagi Fatima Osman Greg Douhan Tyler Dang Shih-hua Tan Sun-jung Kwon **Brandon Ramirez** Ramon Serna Ning Chen Yi-yun Chao Noora Siddiqui Erika Varady Brittany Nguyen Shurooq Abu-Haja Issac Menchaca Amy Huang Jocelyn Sun Sarah Hammado Kiana Perez **Tavia Rucker**

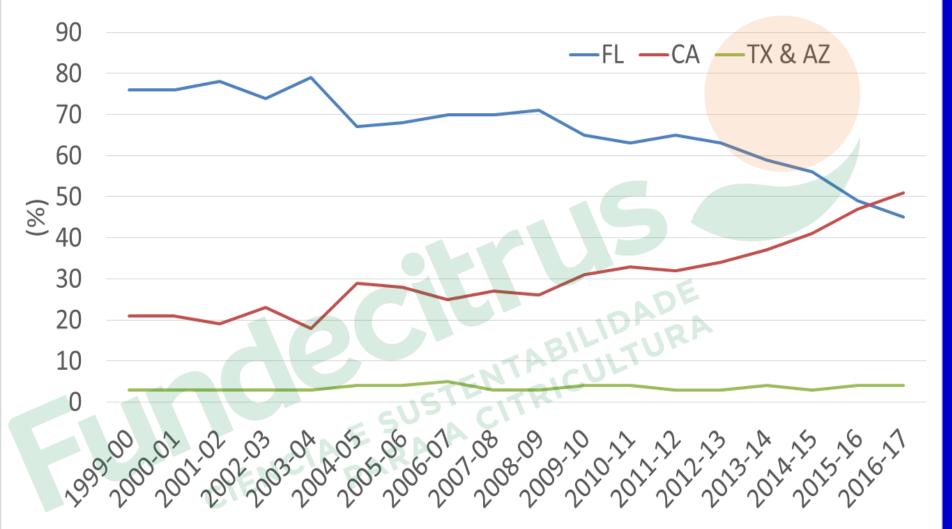
Acknowledgments

United States

Department of Agriculture

CALIFORNIA CINEOS NURSERY BOARD Colfa

UC Riverside Shou-Wei Ding Wenbo Ma Hailing Jin Gregor Blaha Mike Roose Tracy Kahn James Borneman Phillip Rolshausen Caroline Roper **UC Davis** Gitta Coaker Kris Godfrey **Carla Thomas** Neil McRoberts Johan Leveau USDA Jinbo Wang Cristina Paul John Hartung MaryLou Polek **Robert Krueger** Manjunath Keremane Greg McCollum Ed Stover Kim Bowman Stephen Garnsey James Thomson


Brazil

Juliana Astua-Embrapa Nelson Wulf-Fundecitrus Juliano Ayres-Fundecitrus Univ. of Pretoria **Gerhard Pietersen** Washington State Univ. Kenneth Eastwell Univ. of Florida Svetlana Folimonova Bill Dawson **Dean Gabriel** Fred Gmitter Jude Grosser Florida-DPI **Peggy Sieburth** Ben Rosson **NCPN** Erich S. Rudyj, M.Sc. **CDFA** Lucita Kumagai Victoria Hornbaker Joshua Kress **US Sugar-Southern** Gardens Mike Irey Tim Gast University of California Agriculture and Natural Resources

Today's Presentation

- 1. A brief introduction of citrus in California (size, characteristics, types of citrus, markets,)
- 2. HLB situation (historical and current distribution, ...)
- 3. Efforts to contain disease spread (ACP monitoring and control, diseased tree surveys)
- 4. Main research projects and perspectives.

Percent USA Citrus Production

California Commercial Citrus Acrea<mark>ge-2016</mark>

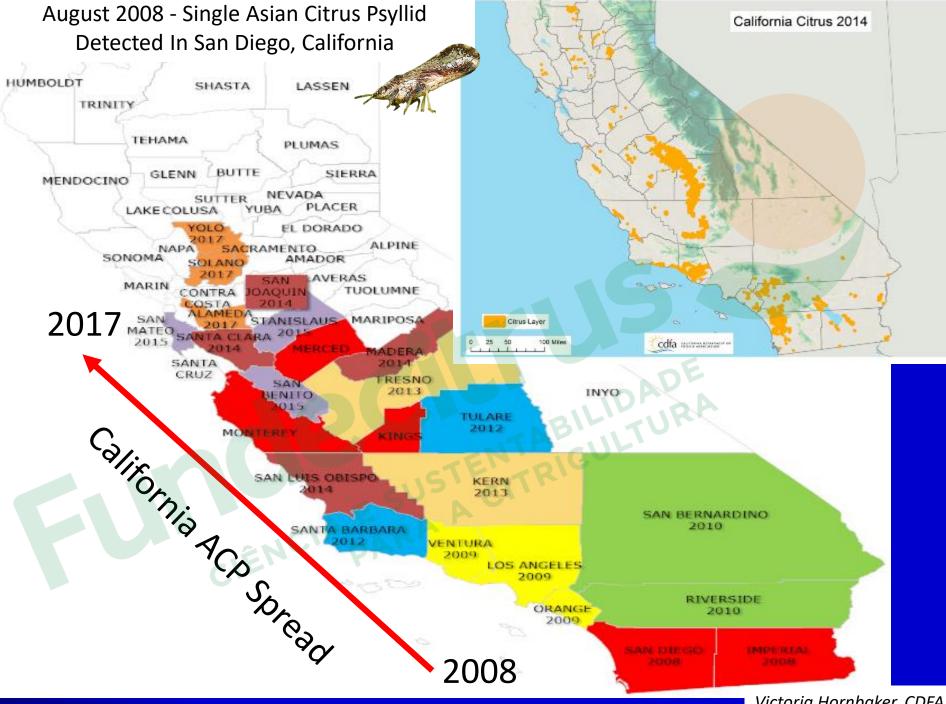
Grapefruit 3%	Pummelos and Hybrids - 1% Limes				
	Cimes 0%	Tuno	Bearing Acres		
Oranges,		Туре	2014	2016	
Valencia		Oranges, Navel	122,882	116,672	
12%		Mandarins & Hybrids	44,347	<u>50,387</u>	
		Lemons	41,882	41,487	
Lemons		Oranges, Valencia	33,828	<mark>29,738</mark>	
17%	Oranges, Navel	Grapefruit	8,316	8,218	
	47%	Pummelos & Hybrids	1,312	1,117	
Mandarins &		Limes	451	482	
Mandarin	A Dress A	TOTAL	253,018	248,101	
Hybrids 20%	CIE				

2016 California Citrus Acreage Report, released August 6, 2016; CDFA & CASS cooperating with the USDA

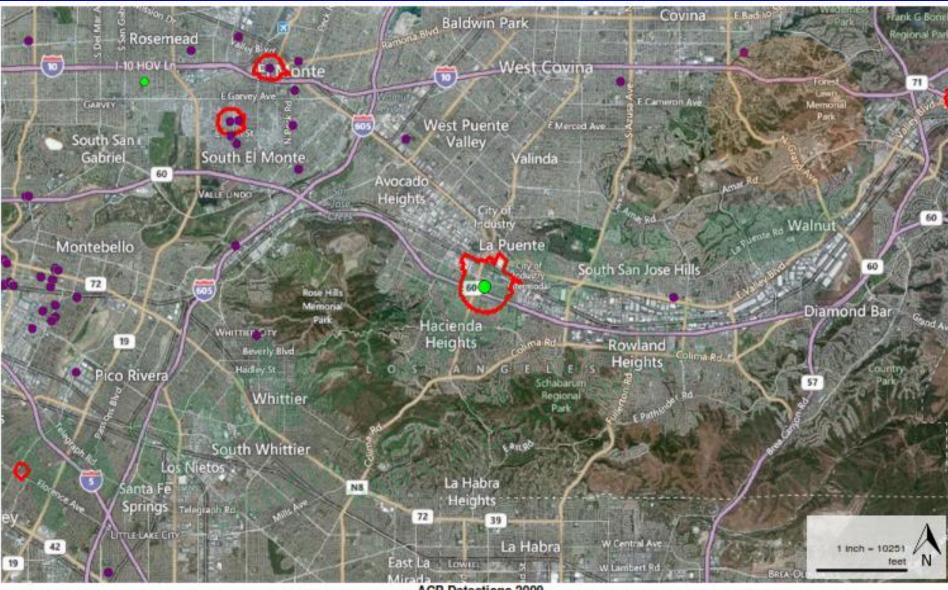
	California Agricultural Pro	ducts Exp	oort Values and Ran	kings, 2014-2	016
2016 Rank	Product California	2014	2015	2016	Change in Value 2015 to 2016
2010 Nailk	Agricultural Exports		\$1 Million		(in Percent) ¹
1	Almonds Almonds	4,528	5,143	4,495	-12.6
2	Wine Wine	1,392	1,480	1,494	0.9
з	Dairy and Products ²	2,423	1,633	1,412	-13.5
4	Walnuts 🛛 🚺 🖾 🌉 🐲	1,446	1,485	1,339	-9.8
5	Pistachios 🔊 📥 🙀	1,124	848	1,148	35.4
6	Table Grapes	890	766	800	4.4
7	Tomatoes, Processed ²	784	814	743	-8.7
8	Rice	681	751	715	-4.8
9	Oranges and Products ²	573	587	669	13.9
10	Strawberries	408	390	404	3.6
11	Seeds for Sowing	324	340	353	3.9
12	Нау	289	320	335	4.7
13	Cotton	377	229	325	41.8
14	Raisins	409	335	322	-4.0
15	Beef and Products ³	404	309	312	1.0
16	Lettuce	338	315	290	-7.8
17	Lemons ²	250	238	218	-8.6
18	Dried Plums	170	182	163	-10.1
19	Peaches and Nectarines	174	139	131	-5.9
20	Raspberries and Blackberries ^{2, 4}	172	149	130	-12.5
21	Cauliflower	118	117	117	0.4
22	Broccoli	128	114	110	-3.9
23	Flowers and Nursery	96	86	97	13.1
24	Spinach Onions ^{2,5} 2016 California	87	92	93	1.3
25	Onions ^{2,5} 2016 California	83	84	88	5.8
26		51	94	81	-13.6
27	Citrus Exports Total	74	81	77	-4.5
28		102 65	77	70	-9.6
29 30	Value: \$970 M	63	56 60	58 58	3.5 -3.4
31	Dates	40	50	53	7.9
32	Tangerines and Mandarins	50	57	51	-10.3
33	Garlic	35	33	47	42.2
34	Blueberries	55	50	43	-12.5
35	Tomatoes, Fresh	51	48	43	-14.6
36	Olives and Olive Oil	37	36	38	6.8
37	Pears	43	39	37	-5.9
38	Sweet Potatoes	23	30	36	21.5
39	Grapefruit	33	32	32	1.6

Commodities ³ and Destinations	Percent of by Destin		Commodities ¹ and Destinations	Percent of by Destin		Commodities ¹ and Destinations	Percent of by Destin	
Almonds (1)	2015	2016	Rice (8)	2015	2016	Lemons (17)	2015	2016
European Union	38	36	Japan	37	33	Canada	28	33
China/Hong Kong	10	12	Korea	18	15	Japan	27	27
India	10	11	Jordan	11	10	South Korea	11	8
Canada	6	6	Canada	8	8	China/Hong Kong	10	9
United Arab Emirates	7	5	Papua New Guin	5	<5	European Uni <mark>on</mark>	9	5
Japan	6	5	European Union	<5	5	Australía	5	5
Other destinations	22	25	Other destinations	22	27	Other destinations	9	13
Wine (2)	2015	2016	Oranges and Products (9)	2015	2016	Dried Plums (18)	2015	2016
European Union	41	44	Korea	28	27	European Union	43	34
Canada	26	24	Canada	23	22	Japan	18	21
China/Hong Kong	10	11	China/Hong Kong	16	20	Canada	8	7
Japan	7	5	Japan	12	13	Other destinations	31	38
Other destinations	16	16	Australia	5	<5			
			Other destinations	16	15	Peaches and Nectarines (19)	2015	2016

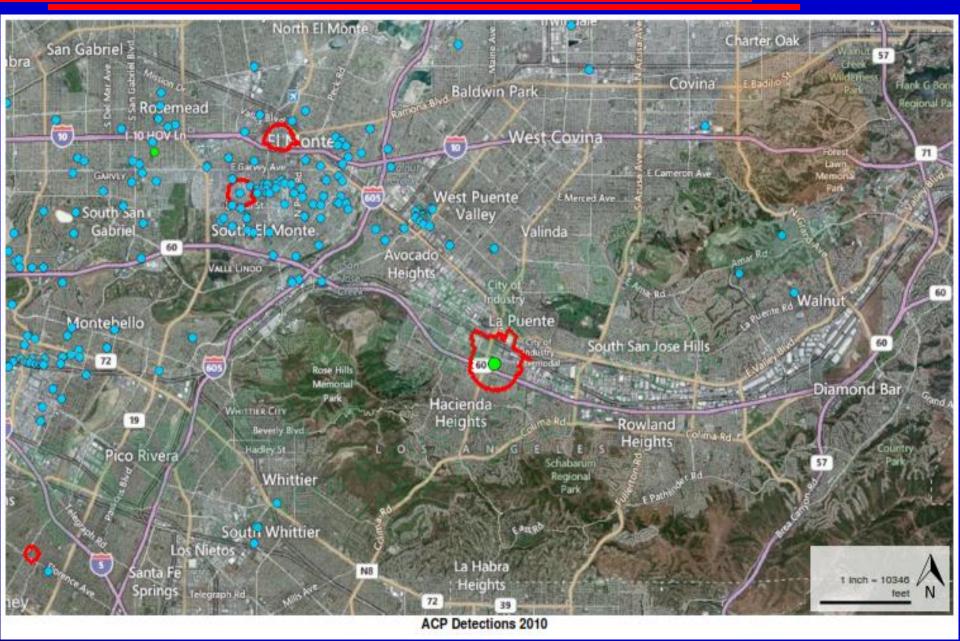
			Grapefruit (39)	2015	2016
Melons (30)	2015	2016	Japan	36	37
Canada	87	83	European Union	26	26
Mexico	5	6	Canada	18	20
Japan	<5	5	Korea	10	10
Other destinations	8	6	Other destinations	9	7
			ALC NE		
Dates (31)	2015	2016	Potatoes (40)	2015	2016
Australia	37	36	Canada	45	43
Canada	27	26	Mexico	21	18
European Union	16	15	Japan	5	9
Other destinations	20	23	Taiwan	<5	S
	N	V	Other destinations	25	21
Tangerines and Mandarins (32)	2015	2016			
Canada	53	50	Avocado (41)	2015	2016
Japan	20	32	Canada	52	26
European Union	8	7	Japan	17	17
Other destinations	19	11	Korea	16	14
			Singapore	8	6

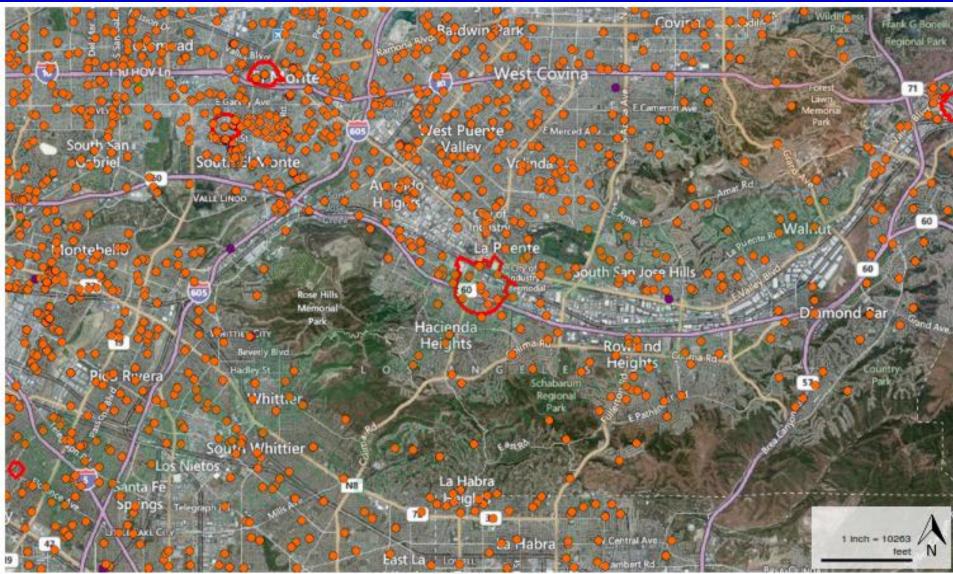

2016-17- Economic Impact of California's Citrus Industry

Key findings

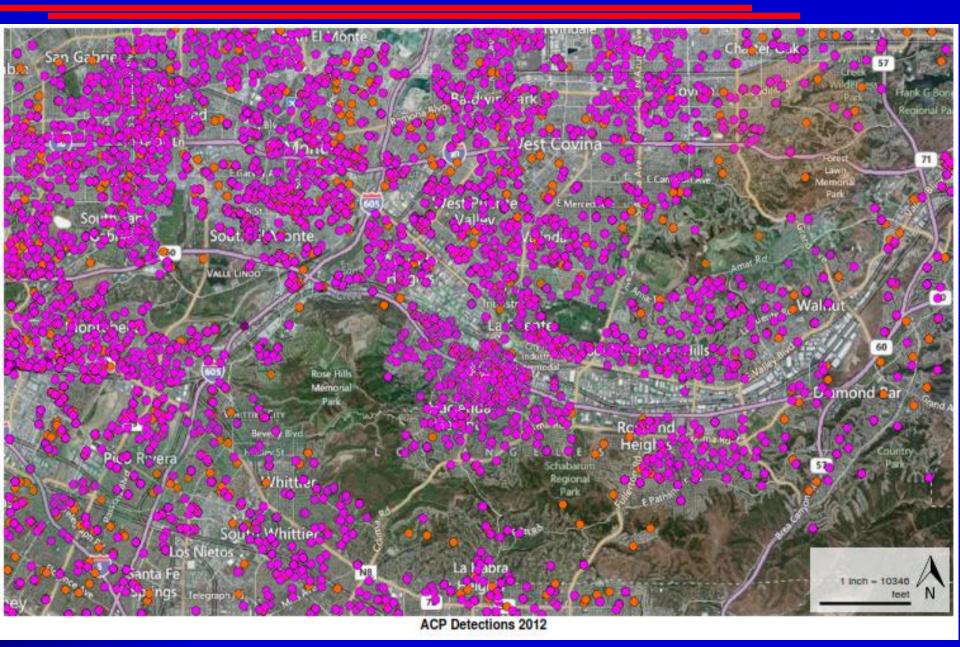

- The trends seem to favor continued health for California's citrus industry. The grower value of production expressed in constant 2016 dollars has increased 53% since 2007 from \$1.5 to \$2.3 billion.
- The value of citrus production in 2016-17 was \$3.39 billion.
- The total economic impact on California's economy was \$7.1 billion.
- The citrus industry added \$1.70 billion to California's GDP.
- Estimated full time equivalent jobs in the California citrus industry totaled 21,674.
- Estimated wages paid by the California citrus industry income totaled \$452 million.
- A 20% reduction in California citrus acreage would cause a loss of 7,350 jobs, \$127 million in employee income, and reduce state GDP by \$501 million.

Today's Presentation


- 1. A brief introduction of citrus in California (size, characteristics, types of citrus, markets,)
- 2. HLB situation (historical and current distribution, ...)
- 3. Efforts to contain disease spread (ACP monitoring and control, diseased tree surveys)
- Main research projects and perspectives.

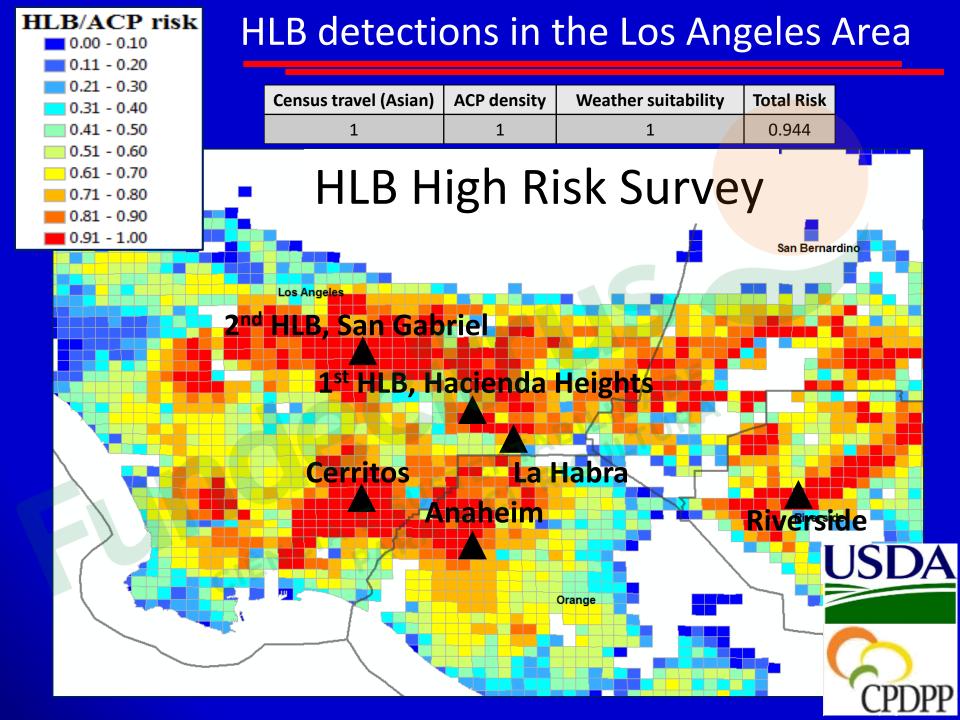


Victoria Hornbaker, CDFA



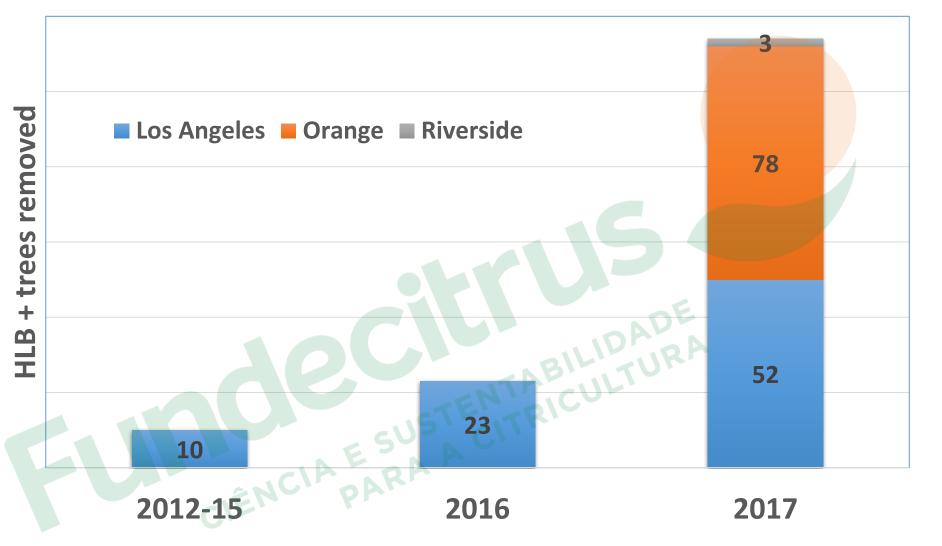
ACP Detections 2009

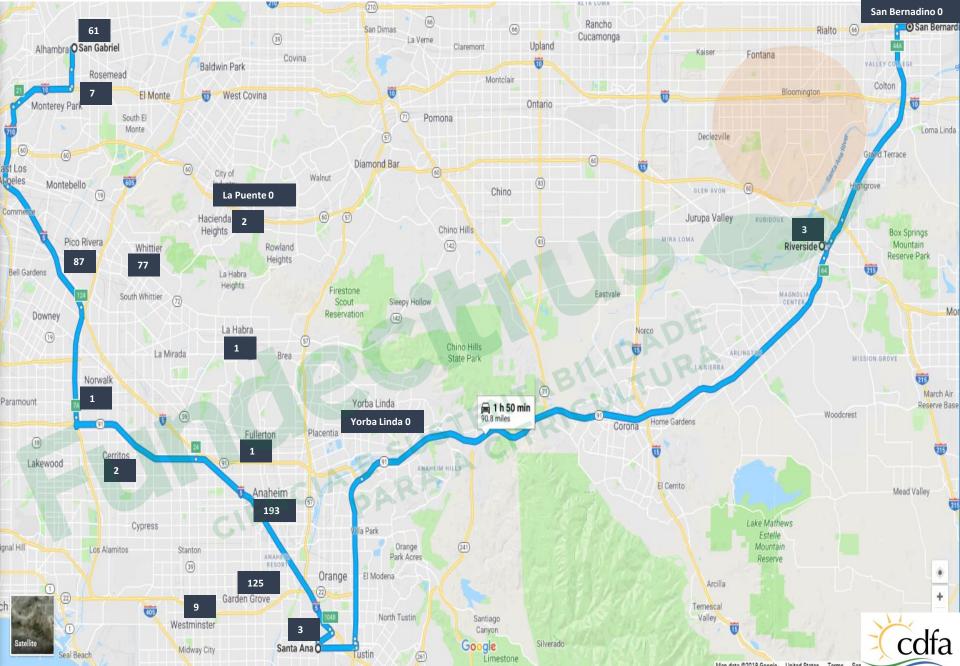
ACP Detections 2011



2012-1st HLB Tree-Hacienda Heights, Los Angeles

- April 2012
- Lemon/Pummelo
- Tree had 23 grafts
- Budwood used Unknown Origin




HLB+ trees California

166 in October 2017...

Beth Grafton-Cardwell, UC Riverside

California HLB+ Trees April 2018. A total of **587 HLB+** trees have been detected and removed. **241** from Los Angeles County, **343** from Orange County, and **3** from Riverside.

Today's Presentation

- 1. A brief introduction of citrus in California (size,
- characteristics, types of citrus, markets,)
- 2. HLB situation (historical and current distribution, .,
- 3. Efforts to contain disease spread (ACP monitoring and control, diseased tree surveys)
- Main research projects and perspectives.

2006 - Californians Visit Brazil

Huanglongbing - greening International Workshop

July 16 - 20, 2006 Ribeirão Preto, SP, Brazil 16 a 20 de julho de 2005 Ribeirão Preto, SP, Brasil

July 13

- Fundecitrus, Juliano Ayres
- Cambuhy Farms, Luiz Rodrigues and Fernando Tersi
- Columbia, Nelson Wullf

July 14

- Fiorese Citrus Nursery, Henrique Fiorese
- Bebdouro Citraculture Experiment Station, Eduardo Stuchi

HUANGLONGBING PRE-CONFERENCE TOUR - SAO PAULO, BRAZIL

Suggested Action Plan for the detection of Huanglongbing (HLB) and/or *Diaphorina citri* in California. It is recommended that a statewide task force be formed to develop appropriate regulations and implement an action plan. On all levels, launch an extensive educational and training program as soon as possible as a means to exclude and/or achieve the early detection and eradication of HLB and the citrus psyllid in California. Engage the 3 "P"s; prepare, prevent, and partnership.

	Nursery Level	Commercial	Regulatory	Residential
HLB Only	Eradicate infected plants; place a hold on the nursery;	Eradicate infected plants; determine the Liberibacter	USDA & CDFA: Conduct a delimitation survey; increase	Survey Murraya plants for HLB symptoms and test by PCR; focus
Murraya spp. are of concern especially those originating from Florida. It is necessary to locate illegally introduced material from Asia, Brazil, Florida, and other infected areas.	determine the Liberibacter species. Conduct a trace forward and trace backward. Implement a survey program of surrounding area (citrus, Murraya spp) Set out traps; monitor for psyllid; conduct training for the identification of psyllid and HLB symptoms.	species; implement a survey program; train and partner with industry for long-term survey.	survey; Implement and enforce regulations regarding inter- and intra-state plant movement; strengthen nursery regulations such as mandatory enclosed production; consider the possibility of eradicating all Murraya plants Prepare the diagnostic lab in Sacramento for confirmation of bacterium	on plants that have entered California from Florida within last 4 years. Survey backyard citrus in high- risk areas. Eradicate infected plantings of Murraya and backyard citrus trees.
D. citri only Texas, Florida, Mexico, and Hawaii are major concerns because the vector is present.	Apply additional systemic pesticides; set out traps to monitor for psyllid; release bio- predators; conduct training on identifying the psyllid and HLB symptoms.	Apply additional pesticides Release bio-predators Conduct training for the identification of psyllid and HLB; set out insect traps to monitor for psyllid	Implement a statewide psyllid monitoring program – set out traps, identify Murraya plantings and survey for psyllid and HLB symptoms; Test psyllids for HLB	Conduct a delimitation survey for psyllid
Both HLB and D. citri	Apply additional systemic pesticides; implement survey and eradication programs; release bio-predators	Apply additional pesticides; implement survey and eradication programs, release bio-predators	USDA & CDFA: Conduct a delimitation survey; increase survey; Implement a psyllid monitoring program – set out traps, survey Murraya	USDA & CDFA: Conduct a delimitation survey; increase survey; Implement a psyllid monitoring program – set out traps, survey Murraya
Neither HLB or D. citri ¹	Launch an extensive education and training program; survey for psyllid	Launch an extensive education and training program; survey for psyllid	Release biological predators; training to identify D. citri and HLB symptoms	Conduct sentinel survey of dooryard citrus & Murraya trees for psyllid and HLB symptoms

2009-Citrus Budwood & Citrus Nurseries Protection

- **California Citrus Nurseries Production Under New Conditions/Systems**
- Senate Bill No. 140 **Citrus Nursery Stock** Pest Cleanliness Program Mandatory pathogen testing for mother nursery trees

Meeting the Challenge of the Asian Citrus Psyllid in California Nurseries

A two-day workshop in Riverside, California

June 11-12, 2009

Organizing Committee:

T. Delfino-California Citrus Nursery Society

A. Eskalen-Dept. of Plant Pathology & Microbiology, University of California Riverside

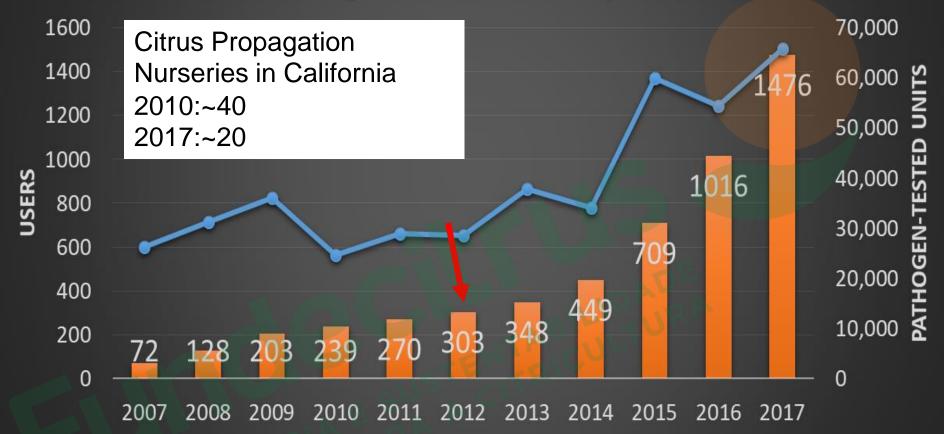
R. Lee-USDA- ARS, National Clonal Germplasm Repository for Citrus and Dates

G. Vidalakis-Citrus Clonal Protection Program, Dept. of Plant Pathology & Microbiology, University of California Riverside

- G. Baze-Golden Pacific Structures, CA T. Delfino-CCNS, CA F. Dixon-Wells Fargo, CA D. Elder-American Ag Credit, CA
- T. Gast-Southern Gardens Citrus, FL
- P. Gomes-CHRP, USDA -APHIS, NC
- D. Howard-AgraTech, CA N. Jameson-Brite Leaf Nursery, FL R. Keijzer-KUBO, The Netherlands P. Llatser-AVASA, Spain
- S. McCarthy-CDFA, CA
- G. Vidalakis-UCR-CCPP, CA

Registration: http://ccpp.ucr.edu & http://eskalenlab.ucr.edu

2010-Budwood & Nursery Protection & Innovation Pre-HLB & ACP Testing & Inspections



CCPP Budwood Users (Bars) Pathogen-Tested Units (Line)

05/20/2018: 1916 customers 404 Orders 279 Accessions 29,979 Buds

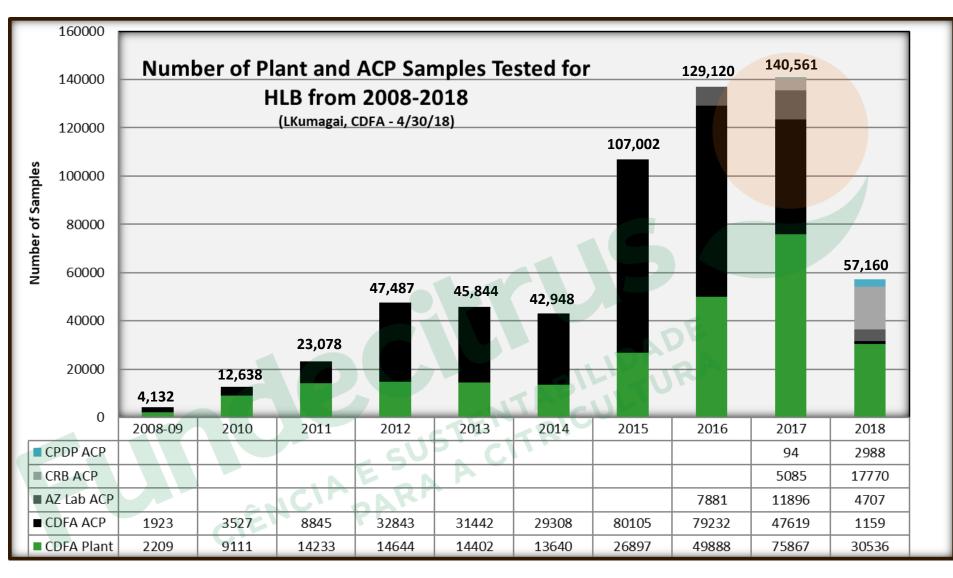
2010-CPDPC: California HLB-ACP Program Partners

- Federal
 - USDA
- State

- California Department of Food & Agriculture
- University of California
- Local

- Industry
 - California Citrus Research Board
 - Growers & Nurseries
- CA Residents

California Citrus Nursery Board


California HLB-ACP Program Activities: \$41.5M

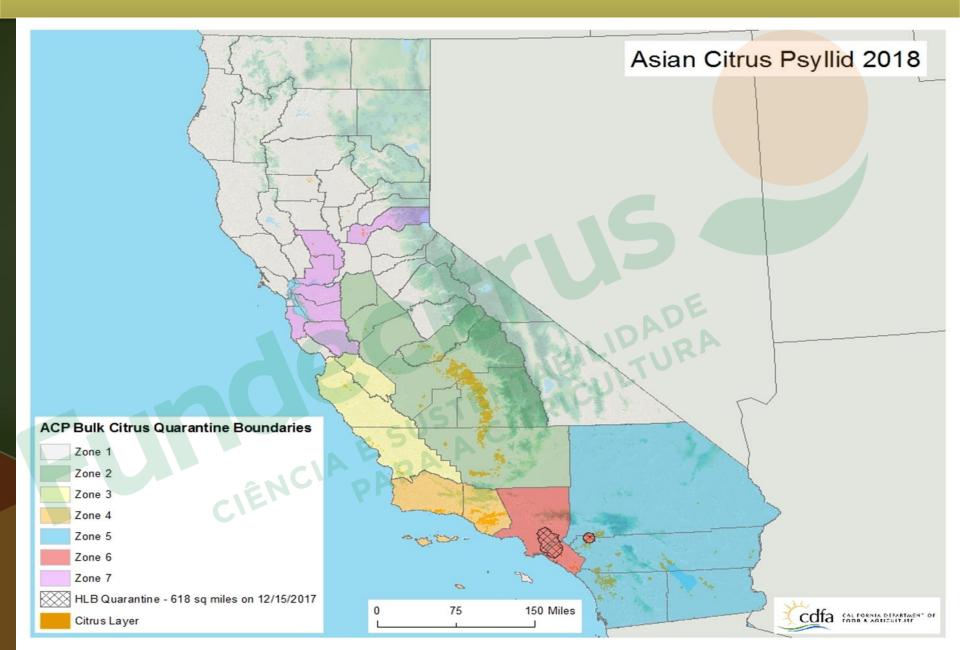
- Detection Trapping
- Visual Survey
- Residential & Area wide Treatments
- Environmental Monitoring
- Neglected and Abandoned Groves
- ACP & Plant Testing
- Biocontrol
- Quarantine
- Outreach
- Research

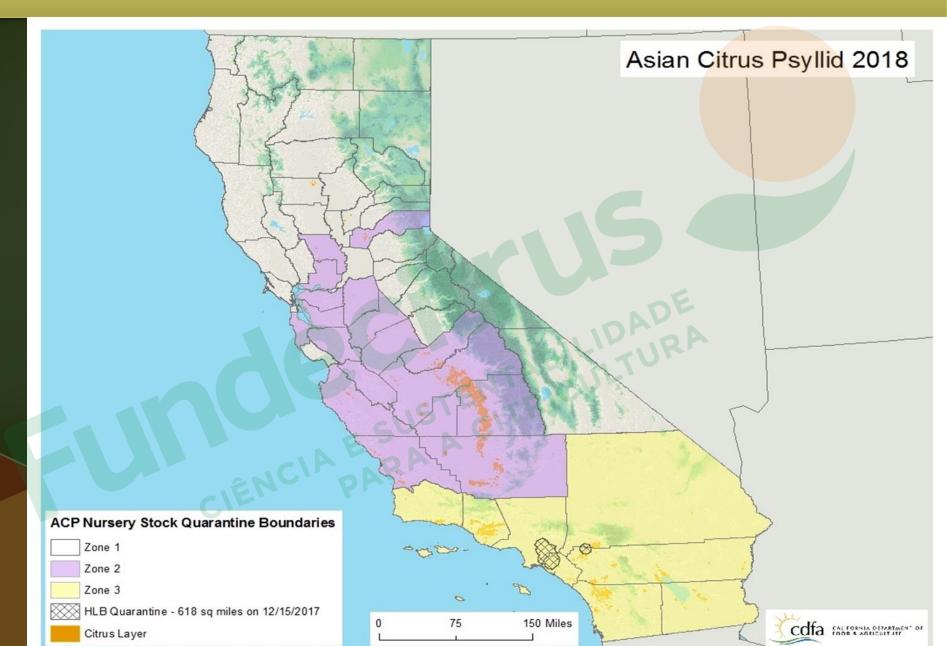
Figure 2. Number of samples submitted for HLB testing per year from 2008 to 2018. Combined total of plant and ACP samples tested from 2008 –2018 is 617,851.

ACP Detection/Delimitation

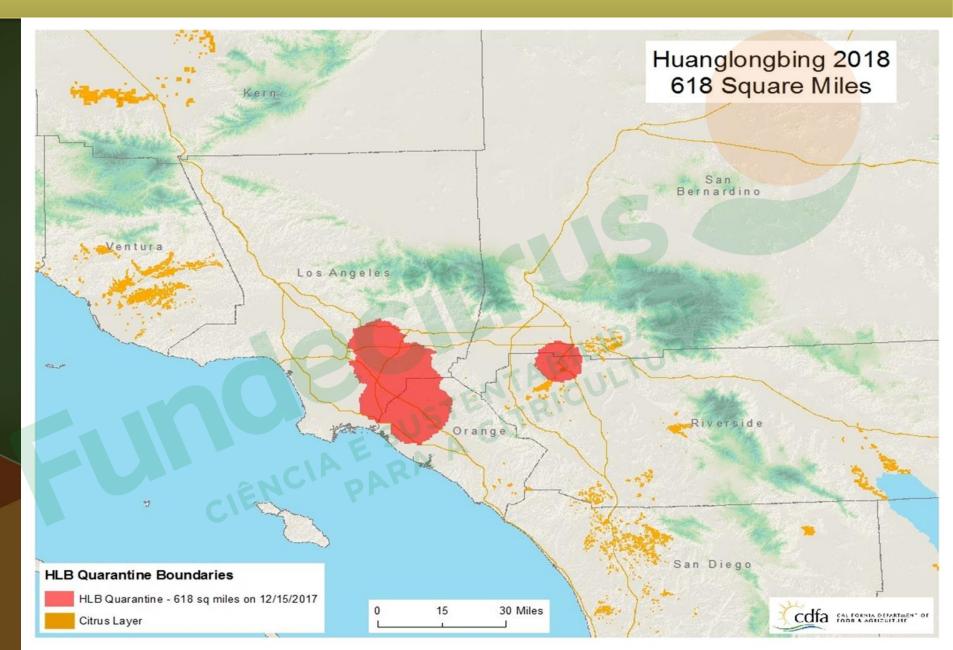
- Residential Trapping throughout the State
- Commercial Grove Trapping in the Central Valley.
- Visual Surveys around the delimitation area

Trap Servicing Interval: Traps will be serviced bi-weekly for one month and monthly after that for two years past the identification date.



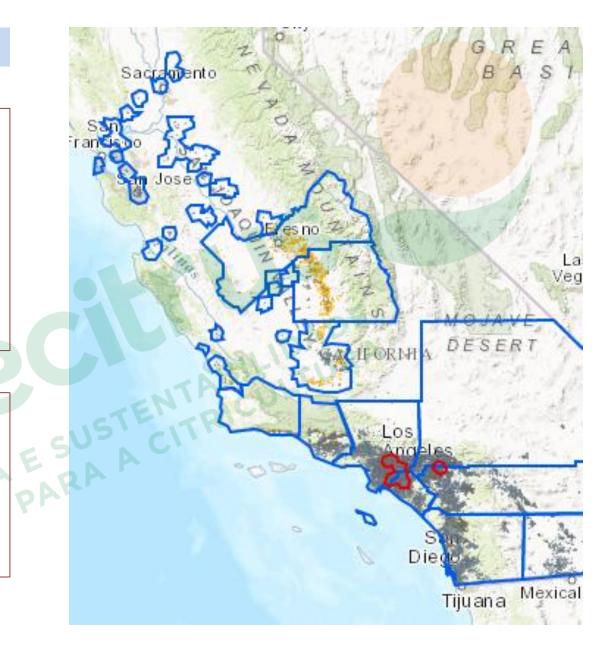

HLB Detection/Delimitation

- Intensive ACP trapping in the HLB detection core
- State-wide risk based survey
- Cluster survey
- 800 meter delimitation survey
- ACP live collection for HLB testing in commercial citrus in Southern California
- Testing plants and ACP for HLB


Regional Quarantine – Bulk Citrus Zones

Regional Quarantine - Nursery Zones

HLB Quarantine Area



http://ucanr.edu/sites/ACP/

Quarantines restrict movement

Eradicative/ Coordinated <u>Treatments</u> Commercial citrus: Growers treat together over a 2-3 week window Urban: treated in a 400 meter area whenever psyllids are found

Areawide treatment program Commercial citrus: PMAs treat together over a 2-3 week window (spring & fall) + additional treatments Urban: parasites released

http://ucanr.edu/sites/ACP/

University of California, Division of Agriculture and Natural Resources

Asian Citrus Psyllid Distribution and Management

Home Growers

Homeowners Map of

Map of Psyillids, HLB and Parasites

Home

Online Course

Grower Options

Grower Management

- Monitoring
- ACP Effective Insecticides
- Residual Activity of Insecticides
- Eradication Strategy
- Area-Wide Treatment Programs
- Grower Costs
- Grower Resources

Homeowner Options

Grower Management

If psyllid is new to an area, then the **eradication strategy** is the best approach to managing the psyllid. If the psyllid is established in an area, then the growers shift to a **management strategy** of treating year-round with ACP-effective insecticides, focusing on overwintering adults and protecting new flush from egg laying. To determine if you are in eradication or management mode, consult the **interactive mapping tool** for the current distribution of ACP and HLB.

Not all insecticides are effective against ACP and some are short-lived, some only affect nymphal stages and some are quite toxic to natural enemies.

- · Focus on overwintering adults and protecting new flush
- · Rotate between chemistries to avoid selecting for resistance
- Use selective insecticides for the in-season treatments to allow natural enemies to survive and assist with control
- Be aware of MRLs to ensure export

UNIVERSITY OF CALIFORNIA Division of Agriculture and Natural Resources

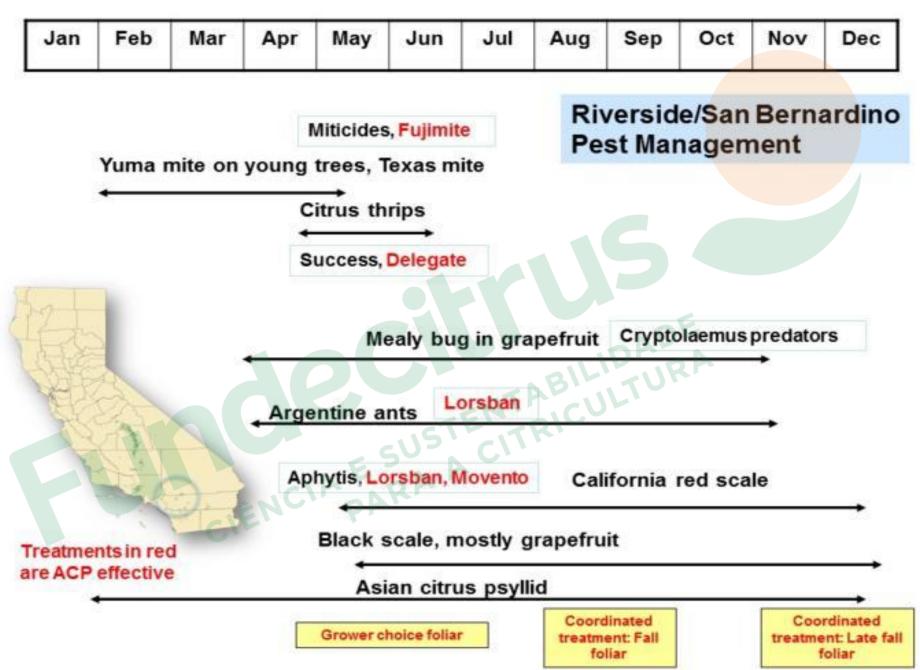
ENCIA

Site Information

Get PDF Reader

Get Flash Player

© 2018 Regents of the University of California

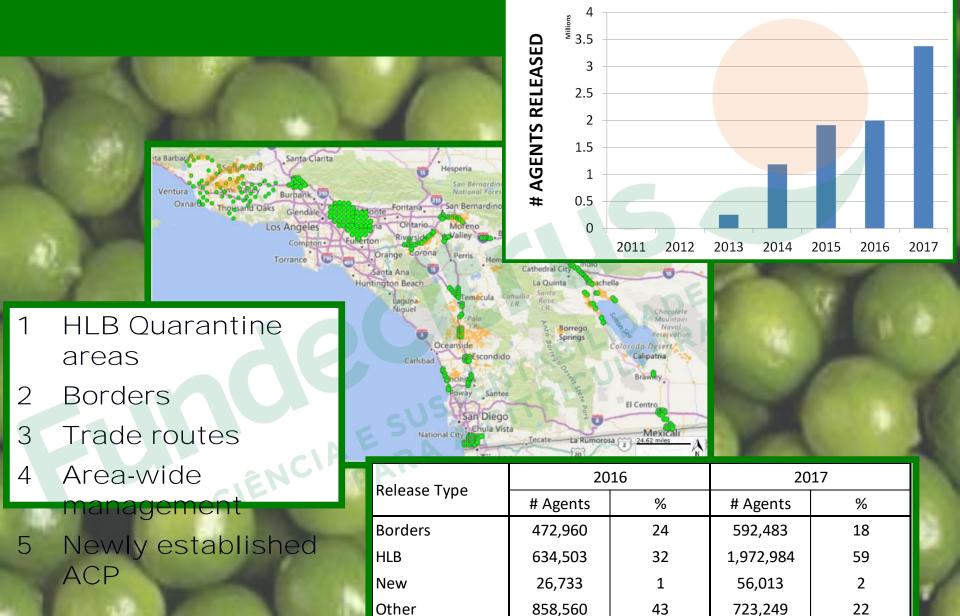

Nondiscrimination Statement

Accessibility

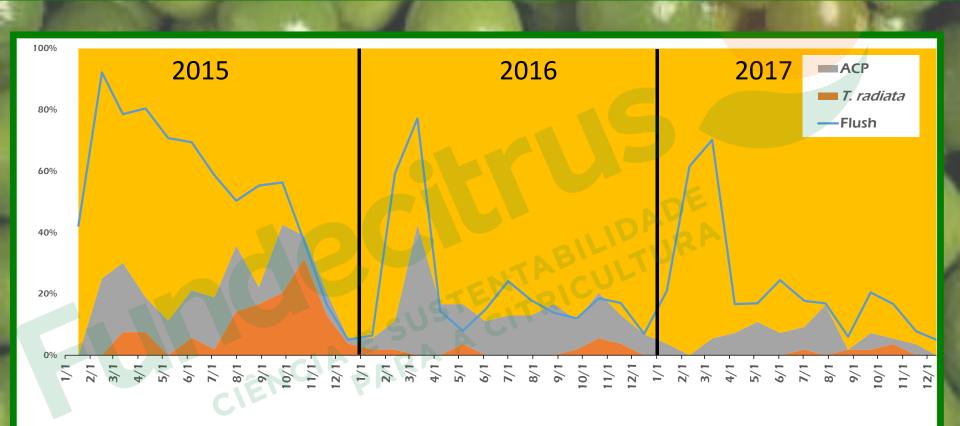
http://ucanr.edu/sites/ACP/

	ACP Effective Synthetic Insecticides			
Chemical group	Pesticides	Mode of Action	Selectivity	
Organophosphate	Lorsban, Supracide, Dimethoate, Imidan	1a	Broad spectrum	
Carbamate	Sevin, Lannate, Carzol	1b	Broad spectrum	
Pyrethroids	Baythroid, Danitol, Mustang, Tombstone	3 Broad spectro		
Neonicotinoids foliar	Provado and generics, Actara	4a	Broad spectrum	
Neonicotinoids systemic	Admire and generics, Platinum		Broad spectrum	
Butenolide	Butenolide Sivanto			
Pyrethroid + neonicotinoid Leverage		3+4a	Broad spectrum	
Neonicotinoid + abamectin	Agri-Flex	E 4a +6	Broad spectrum	
Neonicotinoid + chlorantraniliprole	Voliam Flexi	4a + 28	Broad spectrum	
Spinosyns	Delegate	5	Soft	
Benzylureas	*Micromite	15	Soft	
Meti insecticide	Fujimite	21	Soft	
Tetronic acid	*Movento (foliar systemic)	23	Soft	
Anthranilic Diamide	Altacor, Exirel, Verimark (systemic)	28	Soft	
Anthranilic diamide + abamectin	Minecto Pro	28+6	Soft	

http://ucanr.edu/sites/ACP/



Environmental Monitoring


- To ensure protection of human health and the environment, the CDFA has contracted with DPR to oversee environmental monitoring of treatment projects.
- Sampling media include air, leaf, soil, tank, and water.

Biological Control Agent Releases

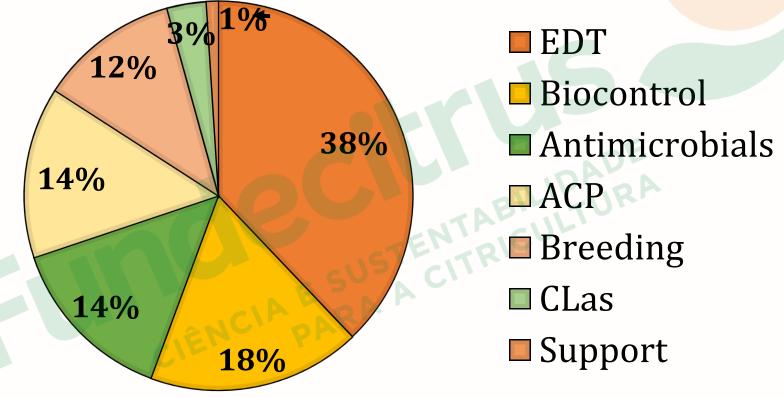
Monitoring Results 2015 - 2017

Today's Presentation

- 1. A brief introduction of citrus in California (size, characteristics, types of citrus, markets,)
- 2. FILE SITUATION (INSTORCAL AND CURRENT DISTRIBUTION, ...)
- Efforts to contain disease spread (ACP monitoring and control, diseased tree surveys)
- 4. Main research projects and perspectives.

Over \$50 million are invested every year in HLB/ACP research nationally from government & growers. Myriads of projects in a long list of subjects. Impossible to cover today...Focus on California.

California Citrus Research Boa<mark>rd</mark> HLB/ACP Proj<mark>ects</mark>


- 5.3 cents/box= **\$9.7 million assessment** (2017-18).
- \$4 million of additional state & federal research dollars to augment grower assessment dollars.
- 75% of Research Budget goes to ACP/HLB research. Partnerships with NIFA, CRDF & HLB MAC.
- Since 2008 the CRB has invested \$33 million in ACP/HLB Research:

V CI

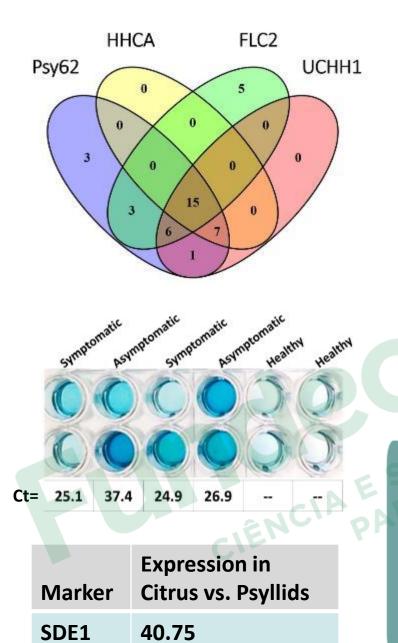
- HLB Resistant/Tolerant Scions & Rootstocks
- Early Detection Technologies (EDTs)
- Vector Control
- Anti-microbial Therapies
- Biocontrol (IPM)
- Citrus Clonal Protection Program (CCPP)

ACP/HLB PROJECTS

UC Riverside-CCPP Research Projects - Collaborations

- 1. High throughput pathogen detection
 - a. qPCR based
 - b. Non-PCR based
- 2. Huanglongbing
 - a. Secreted proteins-W. Ma
 - b. Host small RNAs-H. Jin
 - c. Culturing-D. Gabriel
 - d. K9 screening-USDA-ARS
- 3. Use of viroid RNA as a citrus dwarfing agent CUPS- P. Rolshausen
- 4. Citrus germplasm management CCPP & Nurseries
- 5. Citrus Cryopreservation-USDA-ARS- M. Polek & G. Volk
- 6. Citrus phytobiome-C. Roper & P. Rolshausen
- 7. Breeding for resistance-M. Roose & C. Ramadugu

From 17-20hours per sample to 2-5min per sample


TES Technology Evolving Solutions

TES Technology Evolving Solutions

Wenbo Ma

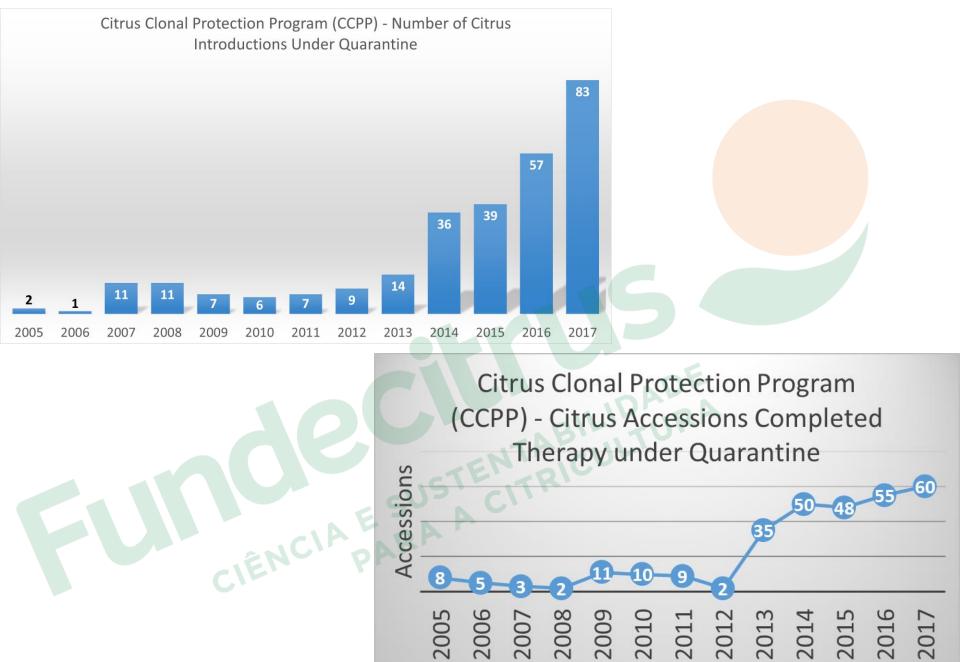
Predict Sec-secreted proteins using genome sequences of CLas

Identify core SDEs that are unique to CLas

Confirm the expression of the SDEs in HLB-infected citrus tissues

Generate antibodies against selected SDEs for HLB detection Identify SDE targets in citrus for modification using genome editing

UC Riverside CCPP Research Projects - Collaborations


- 1. High throughput pathogen detection
 - a. qPCR based
 - b. Non-PCR based
- 2. Identification and Characterization of viral pathogens (Australia)
- 3. Huanglongbing
 - a. Secreted proteins-W. Ma
 - b. Host small RNAs-H. Jin
 - c. Culturing-D. Gabriel
 - d. K9 screening-USDA-ARS
- 4. Use of viroid RNA as a citrus dwarfing agent CUPS- P. Rolshausen
- 5. Citrus germplasm management CCPP & Nurseries
- 6. Citrus Cryopreservation-USDA-ARS- M. Polek & G. Volk
- 7. Citrus phytobiome-C. Roper & P. Rolshausen
- 8. Breeding for resistance-M. Roose & C. Ramadugu

Citrus Germplasm & HLB Broad Collaboration with CCPP – UC Riverside

- 1. University of California, Riverside
- 2. University of Florida, Lake Alfred
- 3. Florida Department of Agriculture & Consumer Services

RICULTURA

- 4. California Department of Food & Agriculture
- 5. California Citrus Research Board
- 6. USDA-ARS
- 7. USDA-APHIS
- 8. Citrus Nurseries & Growers

Year

UC Riverside CCPP Research Projects - Collaborations

- 1. High throughput pathogen detection
 - a. qPCR based
 - b. Non-PCR based
- 2. Identification and Characterization of viral pathogens (Australia)
- 3. Huanglongbing
 - a. Secreted proteins-W. Ma
 - b. Host small RNAs-H. Jin
 - c. Culturing-D. Gabriel
 - d. K9 screening-USDA-ARS
- 4. Use of viroid RNA as a citrus dwarfing agent CUPS- P. Rolshausen
- 5. Citrus germplasm management CCPP & Nurseries
- 6. Citrus Cryopreservation-USDA-ARS- M. Polek & G. Volk
- 7. Citrus phytobiome-C. Roper & P. Rolshausen
- 8. Breeding for resistance-M. Roose & C. Ramadugu

Valencia on Poncirus trifoliata + TsnRNA-IIIb


The Original Observation-Reduced Canopy Volume 20 Years Old Valencia on Trifoliate Rootstock (1984-2003)

Control

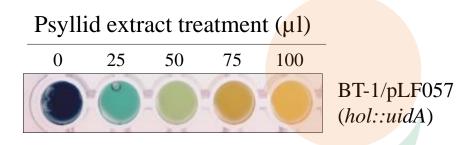
Parent Navel on P. trifoliata + TsnRNA-IIIb

Reduced Canopy Volume 18 Years Old Navel on Trifoliate Rootstock

High Density 3 x 6.7m Standard Density 6 x 6.7m

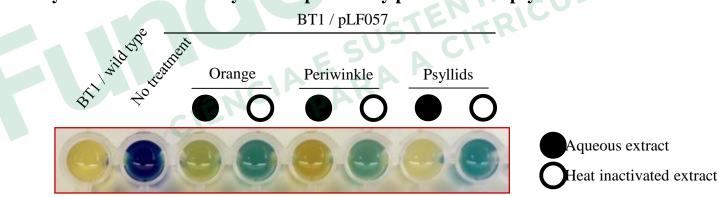
- Increased production per land surface unit - CUPS: Citrus Under Protective Structures – P. Rolshausen

Control


UC Riverside CCPP Research Projects - Collaborations

- 1. High throughput pathogen detection
 - a. qPCR based
 - b. Non-PCR based
- 2. Identification and Characterization of viral pathogens (Australia)
- 3. Huanglongbing
 - a. Secreted proteins-W. Ma
 - b. Host small RNAs-H. Jin
 - c. Culturing-D. Gabriel
 - d. K9 screening-USDA-ARS
- 4. Use of viroid RNA as a citrus dwarfing agent CUPS- P. Rolshausen
- 5. Citrus germplasm management CCPP & Nurseries
- 6. Citrus Cryopreservation-USDA-ARS- M. Polek & G. Volk
- 7. Citrus phytobiome-C. Roper & P. Rolshausen
- 8. Breeding for resistance-M. Roose & C. Ramadugu

Dean Gabriel

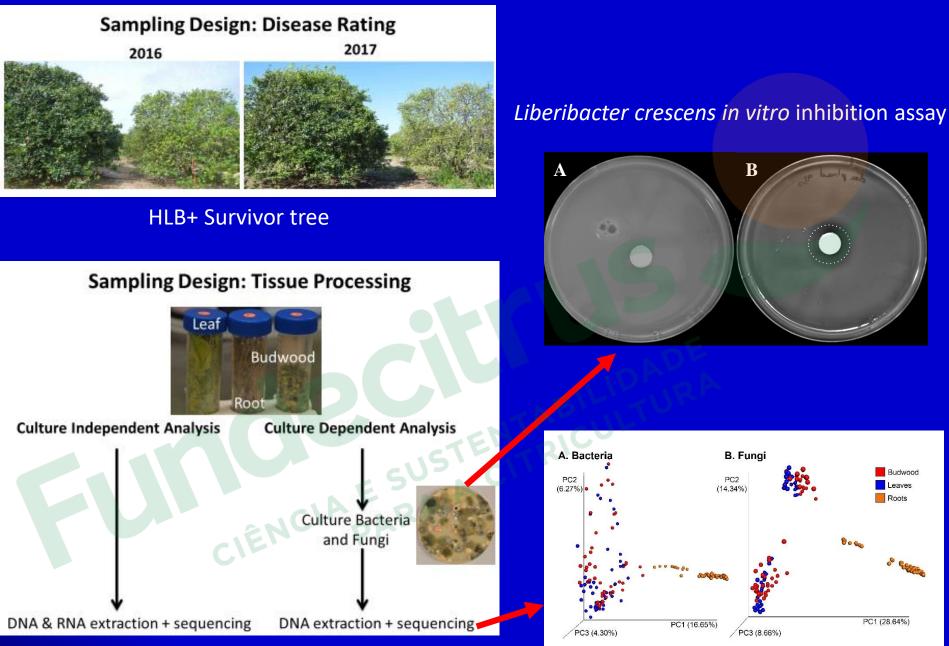

Las SC1 holin promoter is strongly repressed by psyllid extract

- Holin expression is lethal
- Inhibition is dose dependent
- Inhibitor is heat labile and sensitive to protease

 A Wolbachia (bacterial endosymbiont) protein found in psyllids was identified as capable of repression of the Las holing
L. crescens genome gives clues on important genes for

culturing.

Inhibitory effect on GUS activity in BT1/pLF057 by plant leaf and psyllid extracts is heat labile


-Gabriel lab, 2016, including unpublished

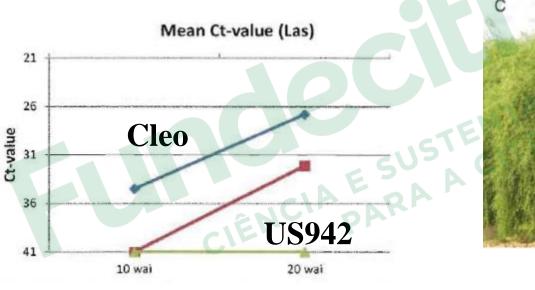
---Fleites et al. 2014. AEM 80:6023-6030.

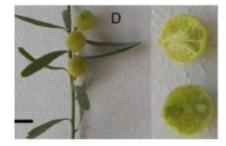
UC Riverside CCPP Research Projects - Collaborations

- 1. High throughput pathogen detection
 - a. qPCR based
 - b. Non-PCR based
- 2. Identification and Characterization of viral pathogens (Australia)
- 3. Huanglongbing
 - a. Secreted proteins-W. Ma
 - b. Host small RNAs-H. Jin
 - c. Culturing-D. Gabriel
 - d. K9 screening-USDA-ARS
- 4. Use of viroid RNA as a citrus dwarfing agent CUPS- P. Rolshausen
- 5. Citrus germplasm management CCPP & Nurseries
- 6. Citrus Cryopreservation-USDA-ARS- M. Polek & G. Volk
- 7. Citrus phytobiome-C. Roper & P. Rolshausen
- 8. Breeding for resistance-M. Roose & C. Ramadugu

Caroline Roper & Philippe Rolshausen

Ginnan et al. 2018. PBIOMES-08-17-0032-A


UC Riverside CCPP Research Projects - Collaborations


- 1. High throughput pathogen detection
 - a. qPCR based
 - b. Non-PCR based
- 2. Identification and Characterization of viral pathogens (Australia)
- 3. Huanglongbing
 - a. Secreted proteins-W. Ma
 - b. Host small RNAs-H. Jin
 - c. Culturing-D. Gabriel
 - d. K9 screening-USDA-ARS
- 4. Use of viroid RNA as a citrus dwarfing agent CUPS- P. Rolshausen
- 5. Citrus germplasm management CCPP & Nurseries
- 6. Citrus Cryopreservation-USDA-ARS- M. Polek & G. Volk
- 7. Citrus phytobiome-C. Roper & P. Rolshausen
- 8. Breeding for resistance-M. Roose & C. Ramadugu

Hailing Jin & Kim Bowman / Michael Roose & Chandrika Ramadugu

Identification of natural defense regulators against HLB

Small RNA profiling of HLB-tolerant/resistant hybrids (e.g. US942) identified a set of defense regulators against *C*Las infection. These identified regulators showed similar regulation in another HLBresistant/tolerant hybrids, Citrus sp. x Eremocitrus

Ramadugu & Roose

US942 P. trifoliata hybrid

Rapid Screening

CIÊNCIA E

TINA

AGE: 12 Months BREED: GSO DISCIPLINE: HIB STAGE OF TRAINING: 1st Stage Odor Training

USDA-APHIS MAC PLAN

AGE: 15 Months BREED: Mal DISCIPLINE: HLB STAGE OF TRAINING: 1st Stage Odor Training

AGE: 15 Months BREED: GSD DISCIPLINE: HLB STAGE OF TRAINING: 1st Stage Odor Training

USDA 225

AGE: 18 Months BREED: Mal DISCIPLINE: HUB STAGE OF TRAINING: 1st Stade Odor Training

AGE: 15 Months BREED: Mal DISCIPLINE: HL8 STAGE OF TRAINING: 1st Stage Odor Training

BOBB'

AGE: 19 Months

DISCIPLINE: HLB

STAGE OF TRAINING:

Fully Trained on Odor

BREED: GSD

AGE: 15 Months BREED: Mai DISCIPLINE: HL8 STAGE OF TRAINING: 1st Stage Odor Training

BELLO

AGE: 22 Months

BREED: Springer

DISCIPLINE: HLB

STAGE OF TRAINING:

Fully Trained on Odor

AGE: 2.3 Months BREED: GSD DISCIPLINE: HLS STAGE OF TRAINING: 1st Stage Odor Training

AGE: 21 Months BREED: GSD DISCIPLINE: Citrus Canker STAGE OF TRAINING: Fully Trained on Odor

AGE: 25 Months BREED: GSD DISCIPLINE: Citrus Canker STAGE OF TRAINING: Fully Trained on Odor

Citrus Huanglongbing (HLB) - My Prediction

- I am optimistic that California will make history.
- 10 years since the ACP introduction and we do not have an HLB epidemic in commercial citrus-Thank you Brazil and Florida for sharing your knowledge!
- Growers start feeling fatigue from the rapid developments and the cost of assessments for various programs.
- Research has developed plethora of information but we need to look for commercialization of technologies.
- Short term
 - ACP control & HLB eradication will not protect California for very long time.
- Medium term
 - Horticultural practices & treatments (tristeza virus & other vectors and antimicrobials for use in existing trees).
- Long term
 - Breeding & editing for resistance tolerance (classical and engineering) & Integrated pest management.

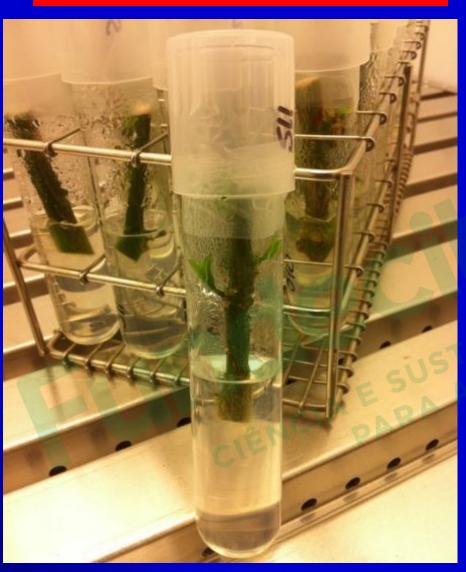
Thank You - vidalg@ucr.edu

See you All in 2019-March at Riverside, CA

- International Huanglongbing Conference
- International Organization of Citrus Virologists Conference

1873-Parent Navel Tree Introduced to Riverside, California from Bahia, Brazil

RiversideCa.gov



Time for citrus shoot-tip grafting video for pathogen (including CLas) elimination?

May 2014

May 2018

Therapy – Mandatory – HLB/ACP Regulations

Citrus Therapy-Shoot-Tip Micrografting

Magnification 16-20x

